Yuki Oka
Professor Oka is interested in the neural and molecular basis of motivated behaviors toward homeostatic regulation. The long-term goal of Oka's research is to understand how the brain integrates internal body state and external sensory information to maintain homeostasis in the body.
Homeostasis is the essential function that keeps our internal environment constant and optimal for survival. If internal state shifts from a normal environment, the brain detects the changes and triggers compensatory responses such as intake behaviors and hormonal secretion. How does the brain monitor internal state, and how does it generate signals that drive us toward appropriate behavioral/physiological responses?
The Oka lab addresses these key questions using body fluid homeostasis as a model system. Internal depletion of water or salt directly triggers specific motivation, thirst or salt appetite, which in turn drives unique behavioral outputs (drinking water and salt intake). Such a direct causality offers an ideal platform to investigate various aspects of homeostatic regulation: (1) detection of internal fluid balance, (2) processing of depletion signals in the brain, and (3) translation of such brain signals into specific motivated behaviors. They aim to dissect, visualize, and control neural circuits underlying each of these steps by combining multidisciplinary approaches including genetics, pharmacology, optogenetics and optical/electrophysiological recording techniques.