T&C Chen Center for Social and Decision Neuroscience Seminar
Abstract: During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to plan, evaluate, and decide between different courses of action. But what do these circuits compute as a decision is being made, and how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion's anatomical connections and by the decision-maker's current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.
For more information, or if you are interested in attending this online seminar, please contact Liz Schroeder by email at eschroder@caltech.edu.